A Geologic Play Book for Utica Shale Appalachian Basin Exploration

FINAL REPORT April 1, 2012 July 1, 2015

(Sections)

Contents (Introduction)

Utica Shale Appalachian Basin Exploration Consortium

Coordinated by the Appalachian Oil & Natural Gas Consortium at West Virginia University

A GEOLOGIC PLAY BOOK FOR UTICA SHALE APPALACHIAN BASIN EXPLORATION

FINAL REPORT

Project Start Date: April 1, 2012 Project End Date: March 30, 2014

UTICA SHALE APPALACHIAN BASIN EXPLORATION CONSORTIUM

Editors Douglas G. Patchen¹ and Kristin M. Carter²

Authors

John Hickman³, Cortland Eble³, Ronald A. Riley⁴, Matthew Erenpreiss⁴, Kristin M. Carter², John A. Harper², Brian Dunst², Langhorne "Taury" Smith⁵, Michele L. Cooney⁵, Daniel Soeder⁶, Garrecht Metzger⁷, Jessica Moore⁸, Michael E. Hohn⁸, Susan Pool⁸, John Saucer⁸, Douglas G. Patchen¹

With Contributions From

John Barnes², Mohammad D. Fakhari⁴, David Fike⁷, James Leone⁹, Thomas Mroz⁶, John Repetski¹⁰, Juergen Schieber¹¹

¹ West Virginia University Research Corporation
² Pennsylvania Geological Survey
³ Kentucky Geological Survey
⁴ Ohio Division of Geological Survey
⁵ Smith Stratigraphic LLC
⁶ U.S. Department of Energy National Energy Technology Laboratory
⁷Washington University in St. Louis
⁸ West Virginia Geological and Economic Survey
⁹ New York State Museum
¹⁰ United States Geological Survey
¹¹ Indiana University

July 1, 2015

CO	NTENTS	i
	FIGURES	iv
	TABLES	X
	LIST OF APPENDICES	xii
EXI	ECUTIVE SUMMARY	xiii
1.0	INTRODUCTION AND PURPOSE	1
1.1	Research Team	1
1.2	Scope of Work	1
1.3	Data Deliverables Access, Organization and Management	
	1.3.1 Interactive Map Application	3
	1.3.2 Play Book Study Website	5
	1.3.3 Data Management	9
2.0	REGIONAL DRILLING ACTIVITY AND PRODUCTION	11
2.1	Drilling and Permitting Activity	
2.2	Production Summary	17
3.0	LITHOSTRATIGRAPHY	19
3.1	Kope Formation	
3.2	Utica Shale	
3.3	Point Pleasant Formation	
3.4	Upper Lexington/Trenton Formation	
3.5	Logana Member	
3.6	Curdsville Limestone Member	21
4.0	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA	AL LOG
4.0 AN	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA	AL LOG
4.0 AN 4.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG
4.0 AN 4.1 4.2	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG
4.0 ANA 4.1 4.2 5.0	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS Methods Results CORE STUDIES High-Resolution Core Photography and Spectral Gamma-Ray Logging	AL LOG
4.0 ANA 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG 22 22 24 36 36 36
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG 22 22 24 36 36 36 36 36
4.0 AN, 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG 22 24 24 36 36 36 36 37
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG 22 22 24 36 36 36 36 37 39
4.0 ANZ 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG 22 22
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG 22 24 36 36 36 36 37 39 39 39
4.0 AN, 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS	AL LOG 22 22 24 36 36 36 36 36 37 39 39 39 39
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA Methods Results CORE STUDIES High-Resolution Core Photography and Spectral Gamma-Ray Logging 5.1.1 Introduction 5.1.2 Materials and Methods 5.1.3 High-Resolution Core Photography 5.1.4 SGR Core Scan Results 5.1.4.1 Kentucky 5.1.4.2 Ohio 5.1.4.3 West Virginia 5.1.4.4 New York	AL LOG 22 24 36 36 36 36 36 37 39 39 39 39 39 42
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA [ALYSIS	AL LOG 22 24 36 36 36 36 36 37 39 39 39 39 42 42 42
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA (ALYSIS	AL LOG 22 22 24 36 36 36 36 36 37 39 39 39 39 39 42 42 42 42
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS Methods. Results CORE STUDIES High-Resolution Core Photography and Spectral Gamma-Ray Logging 5.1.1 Introduction. 5.1.2 Materials and Methods. 5.1.3 High-Resolution Core Photography. 5.1.4 SGR Core Scan Results 5.1.4.1 Kentucky 5.1.4.2 Ohio 5.1.4.3 West Virginia. 5.1.4.4 New York. 5.1.5 Discussion 5.1.5.1 Overview 5.1.5.2 Correlations.	AL LOG
4.0 AN, 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA Methods. Results	AL LOG 22 24 24 36 36 36 36 37 39 39 39 42 42 42 42 42 42 42 42 42 42
4.0 AN, 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA Methods. Results	AL LOG 22 22 24 36 36 36 36 37 39 39 39 39 42 42 42 42 42 42 42 42 42 42
4.0 AN. 4.1 4.2 5.0 5.1	SUBSURFACE MAPPING AND CORRELATION THROUGH GEOPHYSICA IALYSIS Methods Results CORE STUDIES High-Resolution Core Photography and Spectral Gamma-Ray Logging 5.1.1 Introduction 5.1.2 Materials and Methods 5.1.3 High-Resolution Core Photography 5.1.4 SGR Core Scan Results 5.1.4.1 Kentucky 5.1.4.2 Ohio 5.1.4.3 West Virginia 5.1.5 Discussion 5.1.5.1 Overview 5.1.5.3 Relationships with TOC 5.1.6 RHOB to TOC 5.1.7 Summary and Conclusions	AL LOG 22 24 24 36 36 36 36 36 37 39 39 39 42 42 42 42 42 42 42 42 42 42

CONTENTS

	5.2.1 Five Cores from Ohio	. 49
	5.2.2 Cored Intervals, Nomenclature and Mineral Constituents	. 50
5.3	Petrography	. 56
	5.3.1 Pore Types	. 60
	5.3.2 Sedimentary Features	. 60
	5.3.2.1 Laminations	. 60
	5.3.2.2 Scour Surfaces	. 61
	5.3.2.3 Burrows	. 61
	5.3.2.4 Unconformities	. 62
5.4	Sedimentology, Stratigraphy and TOC	. 65
	5.4.1 Kope Formation	. 65
	5.4.2 Utica Shale	. 65
	5.4.3 Upper Organic-Poor Point Pleasant Formation	. 66
	5.4.4 Lower Organic-Rich Point Pleasant Formation	. 67
	5.4.5 Upper Lexington/Trenton Formation	. 68
	5.4.6 Logana Member of the Lexington/Trenton Formation	. 69
	5.4.7 Curdsville Member of the Lexington/Trenton Formation	. 70
	5.4.8 Correlation	. 71
5.5	Depositional Environment	. 73
6.0	INORGANIC GEOCHEMISTRY	. 74
6.1	Bulk Mineralogy	. 74
	6.1.1 X-ray Diffraction	. 74
	6.1.1.1 Materials and Methods	. 74
	6.1.1.2 Results	. 78
	6.1.2 SEM – Energy-Dispersive Spectroscopy	. 78
	6.1.2.1 Methods	. 78
	6.1.2.2 Results	. 78
6.2	Carbonate Content	. 82
	6.2.1 Methods	. 82
	6.2.2 Results and Discussion	. 82
6.3	Carbon Isotopes	. 90
	6.3.1 Methods	. 91
	6.3.2 Results and Discussion	. 93
7.0	SOURCE ROCK GEOCHEMISTRY	102
7.1	TOC Analysis	102
	7.1.1 Materials and Methods	102
	7.1.2 Results	103
7.2	RockEval	112
7.3	Organic Petrography and Thermal Maturity	112
	7.3.1 Materials and Methods	112
	7.3.2 Results	113
	7.3.2.1 Organic Composition of the Utica Shale	113
	7.3.2.2 Bitumen Reflectance and Thermal Maturity	113
	7.3.3 Presentation of Results by State	114
	7.3.3.1 Kentucky	114
	7.3.3.2 Ohio	115

	7.3.3.3 Pennsylvania	120
	7.3.4 Discussion	122
	7.3.5 Characterizing Reservoir Quality Using Mineralogy, TOC and Bitumen Refle	ectance
	124	
	7.3.5.1 Materials and Methods	124
	7.3.5.2 Results	126
	7.3.5.3 Bitumen Reflectance to Vitrinite Reflectance Equivalent Values	137
	7.3.5.4 Discussion	138
7.4	CAI Data	140
8.0	RESERVOIR POROSITY AND PERMEABILITY	141
8.1	Pore Imaging	142
8.2	CT X-ray Analysis	146
	8.2.1 Overview	147
	8.2.2 Instrument Resolution	149
	8.2.3 Results	152
	8.2.3.1 Lost River Core	152
	8.2.3.2 Fred Barth No. 3	156
8.3	Porosity and Permeability Measurements	157
	8.3.1 Results	157
	8.3.1.1 Fred Barth No. 3	157
	8.3.1.2 Legacy Data	159
9.0	UTICA PLAY RESOURCE ASSESSMENT	159
9.1	Remaining Recoverable Resources	160
	9.1.1 Definition of Assessment Unit Sweet Spot Areas	161
	9.1.2 Estimated Ultimate Recovery	165
	9.1.3 Success Ratios and Co-Product Ratios	168
	9.1.4 Results	168
9.2	Original In-Place Resources	169
	9.2.1 Methodology	169
	9.2.1.1 Free Original Hydrocarbon-In-Place	170
	9.2.1.2 Adsorbed Original Hydrocarbon-In-Place	171
	9.2.2 Study Wells and Data	171
	9.2.3 In-Place Assessment Results	178
9.3	Comparison of Recoverable and Original In-Place Resources	179
10.0	O CONCLUSIONS AND IMPLICATIONS FOR PLAY DEVELOPMENT	179
10.1	Lithostratigraphy	180
10.2	2 Depositional Environment	180
10.3	Core Studies	181
10.4	TOC and Thermal Maturity	181
10.5	6 Reservoir Porosity	182
10.6	6 Production Data and Trends	182
10.7	Resource Assessments	182
11.0	REFERENCES CITED	183

FIGURES

Figure 1-1. Screen-shot display of the Study's secure interactive map application, which was	
developed using ArcGIS Server	4
Figure 1-2. Screen-shot display showing the Study's interactive map application	5
Figure 1-3. Utica project website homepage.	5
Figure 1-4. Within each chapter of the Utica Play Book, links to corresponding appendices are	
embedded within the text, allowing users to access the referenced data as they read through the	
chapter	7
Figure 1-5. Screen-shot display of the Utica project home page with "Data" tab highlighted	
(http://www.wvgs.wvnet.edu/Utica)	8
Figure 1-6. Example of a customized Utica database search (Microscopic Organic Analysis,	
Ohio) with results	9
Figure 2-1. Regional correlation chart of Upper Ordovician strata for the Utica Shale Play Book	
Study	2
Figure 2-2. Drilling activity associated with the Utica/Point Pleasant play in the Study area 14	4
Figure 2-3. Utica/Point Pleasant well statistics by operator 14	4
Figure 2-4. Bubble map of combined third and fourth quarter 2013 production data (boe) in	
Ohio	8
Figure 2-5. GOR map of Ohio using a cutoff of 20,000 scfg/bo. A delineation of the gas to oil	
window is evident trending northeast-southwest through eastern Ohio 19	9
Figure 3-1. Correlation chart for early Late Ordovician strata evaluated by the Utica Shale Play	
Book Study)
Figure 4-1. Map of 10,416 well locations consulted or otherwise utilized by the Utica Shale Play	Į
Book Study	2
Figure 4-2. Map of project wells in the Study area with geophysical well logs (1978) loaded into)
Petra® for mapping purposes	3
Figure 4-3. Geophysical type-log for the researched units in the Study area	4
Figure 4-4. Structure map on top of the Kope Formation	5
Figure 4-5. Isopach map of the Kope Formation	5
Figure 4-6. Areal extent and structure map on top of the Utica Shale	5
Figure 4-7. Isopach map of the Utica Shale	5
Figure 4-8. Areal extent and structure map on top of the Point Pleasant Formation	7
Figure 4-9. Isopach map of the Point Pleasant Formation	7
Figure 4-10. Structure map on top of the Lexington/Trenton Formation	3
Figure 4-11. Isopach map of the upper Lexington/Trenton Formation (above the Logana	
Member))
Figure 4-12. Structure map on top of the Logana Member of the Lexington/Trenton	
Formation)
Figure 4-13. Isopach map of the Logana Member of the Lexington/Trenton Formation	1
Figure 4-14. Structure map on top of the Curdsville Member of the Lexington/Trenton	
Formation	2
Figure 4-15. Isopach map of the Curdsville Member of the Lexington/Trenton Formation 33	3
Figure 4-16. Structure map on top of the Middle Ordovician Black River Formation	4
Figure 4-17. Map of the locations of three continuous cores from Kentucky that were described,	
photographed and sampled for stratigraphic correlation and source rock potential analysis 3:	5

Figure 4-18. Photograph of the Cominco American 1 Edwards R&H core (C-316) in Pulaski
County, Kentucky
Figure 5-1. Regional map of Utica/Point Pleasant well locations for which cores were scanned and photographed 38
Figure 5-2 Correlation crossplot for core gamma-ray (CGR) and TOC using all wells in the
Study
Figure 5-3. Map of Ohio showing the locations of five Devon Energy cores donated for this
Study
Figure 5-4. Comparison of Late Ordovician lithostratigraphic nomenclature used for this Study
with organic-rich and organic-poor zones and cored intervals in five Devon Energy wells in
Ohio
Figure 5-5. Richman Farms No. 1 well with core description logs, carbonate content, TOC and
thin section abundance
Figure 5-6. Eichelberger No. 1 well with core description, logs, carbonate content, TOC and thin
section abundance
Figure 5-7. Harstine Trust No. 1 well with core description, logs, carbonate content, TOC and
thin section abundance
Figure 5-8. Hershberger No. 1 well with core description, logs, carbonate content, TOC and thin
section abundance
Figure 5-9. Chumney Family Trust No. 1 well with core description, logs, carbonate content and
TOC
Figure 5-10. Harstine Trust No. 1 well with logs, TOC and plot of main constituents 57
Figure 5-11. Harstine Trust No. 1 well with logs, TOC, core description, main constituents and
fossil abundances
Figure 5-12. Thin section photomicrograph from the Richman Farms well showing ripple cross
lamination overlying scour surface from Richman Farms well
Figure 5-13. Thin section photomicrograph showing scour surface at base of slightly coarser bed
in organic-rich shale
Figure 5-14. Scour surfaces and storm beds in organic-rich shale and limestone of the Point
Pleasant and upper Lexington/Trenton formations
Figure 5-15. Logs, core description and thin section abundance from the Eichelberger No. 1
well
Figure 5-16. Photograph of a portion of the Eichelberger No. 1 core with logs, core description
and thin section abundance for comparison
Figure 5-17. Photograph of a portion of the Harstine Trust core showing an erosion surface at
the top of the upper Lexington/Trenton Formation with organic-rich facies above and below 64
Figure 5-18. Photograph of core of the Kope Formation from the Richman Farms No. 1 well
showing thin beds of alternating black and gray shale
Figure 5-19. Photograph of core of the Utica Shale from the Richman Farms No. 1 well showing
laminated black calcareous shale
Figure 5-20. Photograph of core of the upper Point Pleasant Formation from the Harstine Trust
well
Figure 5-21. Photograph of core of the Point Pleasant Formation from the Chumney Family
Trust No. 1 well showing storm beds in organic-rich black shale

Figure 5-22. Photograph of core of the upper Lexington/Trenton Formation from the Richman
Farms No. 1 well showing abundant limestone beds with low TOC, interbedded with organic-
rich facies with TOC up to 5%
Figure 5-23. Photograph of core of the Logana Member of the Lexington/Trenton Formation in
the Harstine Trust well showing interbedded organic-rich, argillaceous limestone and organic-
poor, brachiopod rudstone
Figure 5-24. Photograph of core of the Curdsville Member of the Lexington/Trenton Formation
in the Eichelberger No. 1 well showing interbedded shale with lime grainstone and packstone. 71
Figure 5-25. Correlation of four of the cored Devon Energy wells
Figure 5-26. North-south correlation from northern OH to southern Ohio. Limestone content
based on GR log is higher although the section is still shaly
Figure 6-1. Photographs of the XRD equipment at the PAGS laboratory in Middletown, PA. A
- CT stage used to measure sample density. B - XRD equipped with multi-sample changer 75
Figure 6-2. Location map of outcrops and wells sampled for XRD analysis as part of the Study.
See Table 6-1 for details
Figure 6-3. Mineral fraction (weight %) versus sample depth (ft) for selected samples in, from
left to right. Ohio. Pennsylvania and New York, and their possible use in stratigraphic
correlation 78
Figure 6-4. High-resolution SEM image of specimen \$13-013-001 from sample interval 8504-
8513 ft in the Hockenberry No. 1. Butler County, PA
Figure 6-5. Energy-dispersive spectroscopy (EDS) analysis of the sample in Figure 6-4. $A =$
Graph of the elements detected \mathbf{B} – Text file generated to describe the elemental concentrations
(weight %) of the primary elements detected in Figure 6-4
Figure 6-6 Element maps for the image in Figure 6-4 using $EDS = A - map of sulfur (green)$
dots): clusters most likely indicate pyrite B – map of calcium (red dots): clusters most likely
indicate calcite or dolomite
Figure 6.7 Element maps showing distributions of multiple elements. A C and D – maps of a
rock cuttings sample from a depth of 8504 8513 ft in the Hockenberry No. 1. Butler County DA
B map of a rock outtings sample from a depth of 13 440 13 450 ft in the DA Tract 163 No. 1
\mathbf{D} = map of a fock cuttings sample from a depth of 15,440-15,450 ft in the LA fract 105 No. 1, Dive County, DA (shown for contrast with A)
Figure 6.8 CP log corbonate content and TOC from the Eichelberger No. 1. Ashland County
Obio
Figure 6.0. Crossplot of TOC and corbonate content from the Eichelberger No. 1 well. Ashland
County Obio
Figure 6.10 Crossenlat of TOC and corbonate content from the Dichman Forms No. 1 well
Madine County, Okie
Figure 6.11 Crosselet of TOC and asshare a content from the Harshharser No. 1 well. Wayne
Country Ohio
County, Onio
Guerrage County Obio
Figure 6.12 Correlation of wells from Ohio to New York from Dlack Diver Formation we to
Figure 6-15. Correlation of wells from Onio to New York from Black River Formation up to
Ulica Silale
rigure 0-14. Detailed view of organic-fich interval correlated in Figure 0-15. Ked-filled curve
Figure 6.15 CD log TOC value and aerbonate content from the Strenko No. 1 well which is
Figure 0-13. OK 10g, TOC value and carbonate content from the Skranko No. 1 Well, Which is
near the outcrop ben in merkiner County, New Tork

Figure 6-16. Crossplot of TOC value and carbonate content data from the Skranko No. 1 well,
Herkimer County, New York
Figure 6-17. GR log, TOC value and carbonate content from the Lanzilotta No. 1 well,
Delaware County, New York
Figure 6-18. Crossplot of TOC value and carbonate content from the Lanzilotta No. 1 well,
Delaware County, New York
Figure 6-19. Map of sampling locations for carbon isotopes
Figure 6-20. Chronostratigraphic relationships of Late Ordovician formations in New York (left)
with generalized $\delta^{13}C_{carb}$ intervals and $\delta^{13}C_{carb}$ chemostratigraphic profiles (right)
Figure 6-21. Transect of closely spaced wells showing discrepancy in $\delta^{13}C_{carb}$ records over short
distances (green line in Figure 6-19)
Figure 6-22. Transect across West Virginia and Pennsylvania (blue line in Figure 6-19)
Figure 6-23. Transect across New York and Pennsylvania (black line in Figure 6-19)97
Figure 6-24. Isopach map in ft of $\delta^{13}C_{carb}$ interval BR-1
Figure 6-25. Isopach map in ft of $\delta^{13}C_{carb}$ interval BR-2
Figure 6-26. Isopach map in ft of $\delta^{13}C_{carb}$ interval BR-3
Figure 6-27. Isopach map in ft of $\delta^{13}C_{carb}$ interval GICE peak to base
Figure 6-28. Isopach map in ft of $\delta^{13}C_{carb}$ interval GICE fall to peak
Figure 6-29. Isopach map in ft of $\delta^{13}C_{carb}$ interval GICE end to fall
Figure 6-30. Isopach map in ft of $\delta^{13}C_{carb}$ interval TR-1101
Figure 6-31. Isopach map in ft of $\delta^{13}C_{carb}$ interval TR-2101
Figure 7-1. Map of wells with TOC data gathered for the Study
Figure 7-2. Map of maximum TOC (%) measured in the Kope Formation 104
Figure 7-3. Map of maximum TOC (%) measured in the Utica Shale105
Figure 7-4. Map of maximum TOC (%) measured in the Point Pleasant Formation105
Figure 7-5. Map of maximum TOC (%) measured in the upper Lexington/Trenton Formation
interval
Figure 7-6. Map of maximum TOC (%) measured in the Logana Member of the
Lexington/Trenton Formation107
Figure 7-7. Map of maximum TOC (%) measured in the Curdsville Member of the
Lexington/Trenton Formation
Figure 7-8. Crossplot of RHOB log value vs. sampled %TOC for the Kope Formation 109
Figure 7-9. Crossplot of RHOB log value vs. sampled %TOC for the Utica Shale 109
Figure 7-10. Crossplot of RHOB log value vs. sampled %TOC for the
Point Pleasant Formation
Figure 7-11. Crossplot of RHOB log value vs. sampled %TOC for the upper Lexington/Trenton
Formation110
Figure 7-12. Crossplot of RHOB log value vs. sampled %TOC for the Logana Member of the
Lexington/Trenton Formation
Figure 7-13. Crossplot of RHOB log value vs. sampled %TOC for the Curdsville Member of the
Lexington/Trenton Formation
Figure 7-14. Petroleum generation chart, showing the ranges of oil, wet gas and dry gas
generation (from Dow, 1977)
Figure /-15. Map of Kentucky showing locations of core samples. Average Ro random values
tor each core are shown in red type

Figure 7-16. Map of Ohio showing locations of core samples. Average Ro random values for Figure 7-17. Map of eastern Ohio showing locations of core samples. Average Ro random values for each core are shown in in the yellow shaded boxes beside the core location points. 119 Figure 7-18. Map of Pennsylvania showing locations of well cuttings samples. Average Ro Figure 7-19. Reflectance measurements for discrete depth intervals in Washington County, Pennsylvania, showing a change of approximately 1.0% Ro over a depth of about 10,000 ft... 122 Figure 7-21. Map of Ohio showing isoreflectance lines for the central part of the state...... 123 Figure 7-22. Map of Pennsylvania showing sample locations utilized by Cooney (2013) in a preliminary study of Utica/Point Pleasant thermal maturity (black circles), and those used in the Figure 7-23. Crossplot of mean reflectance measurements (BRo%) versus depth in the PA Dept. Figure 7-24. Crossplot of mean reflectance measurements (BRo%) versus depth in the Shaw Figure 7-25. Crossplot of mean reflectance measurements (BRo%) versus depth in the Starvaggi No. 1 well, Washington County, Pennsylvania. Figure 7-26. Crossplot of mean reflectance measurements (BRo%) versus depth in the Figure 7-27. Crossplot of mean reflectance measurements (BRo%) versus depth in the Shade Figure 7-28. Crossplot of mean reflectance measurements (BRo%) versus depth in the Svetz No. Figure 7-29. Map of Pennsylvania showing approximate thermal maturity boundaries for the Figure 7-30. Map of CAI data for the Upper Ordovician shale in Ohio (modified from Repetski Figure 8-1. Selected SEM photomicrographs of organic matter and pores observed in the Point Figure 8-2. Selected backscatter SEM photomicrographs of the Point Pleasant Formation in the Figure 8-3. Photomicrographs of selected specimens analyzed by PAGS using standard SEM Figure 8-4. Photomicrographs of selected Pennsylvania specimens, analyzed by Juergen Figure 8-5. Photomicrograph of specimen from a depth of 566 ft in 74NY5 Mineral Core, Herkimer County, New York, analyzed by Juergen Schieber using ion milling and SEM imaging Figure 8-6. Map of the Study area showing generalized locations of the Barth and Lost River cores, superimposed on a facies map of Trenton/Point Pleasant time from the Trenton-Black Figure 8-7. A 3-D image reconstruction of a Marcellus Shale core from the NETL CT scanner Figure 8-8. A 16-slice Aquillion medical CT scanner, similar to the unit in use at NETL...... 150

Figure 8-9. CT scan of a 2-D slice through the center of a 3-ft long segment of the Martinsburg
Formation from the Lost River core
Figure 8-10. NorthStar Imaging M-5000 industrial CT scanner at NETL. Left: X-ray detector
with vertical sandstone core. Right: X-ray source with vertical sandstone core
Figure 8-11. Scanned image of single layer of data along an XY plane through a one-in diameter
sample of Marcellus Shale containing a mineralized fracture. Data obtained from the NETL
industrial scanner
Figure 8-12. The micro-CT scanner at NETL. Source is on the left, rotating stage is the pedestal
in the center, and detector is on the right
Figure 8-13. Micro-CT images of core samples. Left: 6-mm diameter sample of calcite-
cemented sandstone. Right: 4-mm diameter sample of Marcellus Shale
Figure 8-14. Photograph of a box of Lost River core. Note color variations (light gray to gray)
that suggest relatively high carbonate and low organic content in this sampling of the
Martinsburg Formation. (Image: U.S. DOE)
Figure 8-15. The GeoTek Multi-Sensor Core Logger (MSCL) scanning Lost River core at
NETL. Photograph by Karl Jarvis
Figure 8-16. Components of the Geotek MSCL (Geotek Ltd., Geotek Multi-Sensor Core Logger
<i>Flyer</i> . Daventry, UK, 2009)
Figure 8-17. An example of the template from the Strater [™] software used to
display core data
Figure 8-18. Images of Martinsburg Formation core scanned in industrial X-ray CT. Left: 3D
view of original reconstruction. Right: Core segmented by density and clustering. Red: fracture
volume. Blue: organic matter. Pink: carbonate. Green: porosity. (Image: U.S. DOE)
Figure 8-19. Images of Utica/Point Pleasant interval at 5672 ft (Fred Barth No. 3). Left:
horizontal sample subcored along bedding planes (1700 slices at a resolution of 42 µm).
Montage of 182 slices through core on Z axis; Right: middle Y-axis slice along length of core
plug showing abundant shells
Figure 8-20. Photograph of the Point Pleasant interval in the Fred Barth No. 3
(API#3403122838), 5660-5670 ft
Figure 9-1. Play area used for both resource assessments performed as part of this Study 160
Figure 9-2. Contour map of vitrinite reflectance calculated from conodont alteration index,
pyrolysis and bitumen reflectance data
Figure 9-3. Contour map of probability that calculated vitrinite reflectance exceeds 1.1
Figure 9-4. Producing oil wells by total cumulative production
Figure 9-5. Geographic extent of minimum and maximum Oil AU sweet spot used in resource
assessment
Figure 9-6. Producing gas wells by total cumulative production
Figure 9-7. Geographic extent of minimum and maximum Wet Gas AU sweet spot used in
resource assessment
Figure 9-8. Geographic extent of minimum and maximum sweet spots used in resource
assessment.
Figure 9-9. Cumulative production by months online (light gray dots), median values (black
filled circles) and medians for wells in the oil sweet spot grouped by number of years of
production data available ranging from 1 to 4 years
Figure 9-10. Cumulative production by months online (light gray dots) and medians for wells in
the oil sweet spot grouped by number of years of production data available ranging from 1 to 4

years, and fitted models for calculating minimum, median and maximum estimated ultimate
recovery167
Figure 9-11. Wells with a full suite of digital logs for the Utica Shale, Point Pleasant Formation
and/or Logana Member of the Trenton Limestone in the Consortium data set and with a top
depth greater than 2500 feet
Figure 9-12. Thermal maturity as determined from equivalent %Ro; map used to determine
maturity of study wells
Figure 9-13. Mean total organic carbon (TOC%) for Utica Shale as derived from Consortium
analytical data
Figure 9-14. Mean total organic carbon (TOC%) for Point Pleasant Formation as derived from
Consortium analytical data
Figure 9-15. Mean total organic carbon (TOC%) for Logana Member of Trenton Limestone as
derived from Consortium analytical data174
Figure 9-16. Methane isotherms for New York (Advanced Resources International, Inc., 2008).
New York Utica isotherm used for New York, majority of Pennsylvania and West Virginia 175
Figure 9-17. Methane isotherms for various states (Advanced Resources International, Inc.,
2012). Ohio Utica isotherm used for Ohio; New York and Ohio Utica isotherms used for
northwestern corner of Pennsylvania175
Figure 9-18. Temperature gradient (°F/ft) as derived from data obtained from the National
Geothermal Data System

TABLES

Table 7-8. Mineralogy, TOC and Reflectance Data for Shaw No. 1.	128
Table 7-9. Mean reflectance (BRo%) by formation, Shaw No. 1	129
Table 7-10. Mineralogy, TOC and Reflectance Data for Starvaggi No. 1.	130
Table 7-11. Mean reflectance (BRo%) by formation, Starvaggi No. 1.	132
Table 7-12. Mineralogy, TOC and Reflectance Data for Marshlands No. 2.	133
Table 7-13. Mean reflectance (BRo%) by formation, Marshlands No. 2.	134
Table 7-14. Mineralogy, TOC and Reflectance Data for Shade Mt. No. 1.	135
Table 7-15. Mean reflectance (BRo%) by formation, Shade Mt. No. 1.	135
Table 7-16. Mineralogy, TOC and Reflectance Data for Svetz No. 1.	136
Table 7-17. Mean reflectance (BRo%) by formation, Svetz No. 1	136
Table 7-18. Conversion of bitumen reflectance (BRo) measurements to vitrinite reflectance	
equivalent (Ro eq) values utilizing three different methods	137
Table 7-19. Conodont Alteration Index (CAI) measurements performed by the USGS for this	5
Study	140
Table 8-1. Pennsylvania samples analyzed using standard SEM techniques.	143
Table 8-2. Samples analyzed using ion milling and SEM techniques.	144
Table 8-3. Legacy porosity and permeability data for selected Ohio wells	159
Table 9-1. Parameters for estimated ultimate recovery used in resource assessment of Oil	
Assessment Unit	167
Table 9-2. Parameters for estimated ultimate recovery used in resource assessment of Wet Ga	as
Assessment Unit	168
Table 9-3. Parameters for estimated ultimate recovery used in resource assessment of Gas	
Assessment Unit	168
Table 9-4: Summary of recoverable oil and gas remaining.	169
Table 9-5. Pressure gradient (psi/ft) as assumed given limited formation-specific well data for	r
West Virginia and Ohio, Consortium partner input and publicly-available data	176
Table 9-6. Data items and general data source(s) for free hydrocarbon-in-place. Data items in	n
bold type are values that are calculated from parameters listed below the item. *= from this	
Study	177
Table 9-7. Data items and general data source(s) for adsorbed hydrocarbon-in-place. Data ite	ems
in bold type are values that are calculated from parameters listed below the item. *= from this	S
Study	178
Table 9-8. Estimated original in-place oil and gas resources (volumes per unit area) as	
determined from data provided by the Consortium partners.	178
Table 9-9. Estimated original in-place oil and gas resources (total volumes) as determined fro	m
data provided by the Consortium partners	179
Table 9-10. Approximate current recovery factors based on recoverable and in-place resource	e
estimates	179

LIST OF APPENDICES

- 2-A. Utica production data
- 3-A. Utica and equivalent outcrop descriptions by state
- 5-A. Spectral gamma-ray logging data correlations
- 6-A. X-ray diffraction data and graphs
- 6-B. Petrographic analysis of Pennsylvania wells to corroborate mineralogy interpretations
- 6-C. Scanning electron microscopy Energy-dispersive spectroscopy data
- 7-A. Organic maceral photomicrographs
- 7-B. Cooney (2013) undergraduate thesis
- 7-C. Bitumen reflectance reports for Pennsylvania samples
- 7-D. Bitumen reflectance to vitrinite reflectance equivalent values
- 8-A. SEM imaging prepared by John Barnes of the Pennsylvania Geological Survey
- 8-B. SEM imaging prepared by Juergen Schieber of Indiana University
- 8-C. Lost River core charts
- 8-D. CT scans for the Fred Barth No. 3 core
- 8-E. Fred Barth No. 3 core report

Utica Shale Play Book

The AONGRC's Utica Shale Appalachian Basin Exploration Consortium includes the following members:

Research Team:

WVU National Research Center for Coal and Energy, Washington University, Kentucky Geological Survey, Ohio Geological Survey, Pennsylvania Geological Survey, West Virginia Geological and Economic Survey, U.S. Geological Survey, Smith Stratigraphic, and U.S. DOE National Energy Technology Laboratory.

Sponsorship:

Anadarko, Chevron, CNX, ConocoPhillips, Devon, EnerVest, EOG Resources, EQT, Hess, NETL Strategic Center for Natural Gas and Oil, Range Resources, Seneca Resources, Shell, Southwestern Energy, and Tracker Resources.

Coordinated by: Appalachian Oil & Natural Gas Research Consortium at West Virginia University.